Skip to main content

Free Content Acoustic Properties of 3D Printed Bulk Absorbers with Novel Surface Topologies

"font-size: 12px;">Traditional manufacturing techniques offer limited control over the cellular architecture of porous materials and often do not allow fabrication of complex topologies. Here, we utilize 3D printing to overcome these difficulties and fabricate bulk absorbers with novel cellular architectures for use as acoustic liners. Absorbers with controlled surface topologies were fabricated using a combination of a commercial mathematical plotting software (MATLAB) and stereolithographic (SLA) 3D printing. The developed MATLAB tool generates porous architectures using a field of points defined by a 3D grid and allows precise control over all microstructural parameters. The generated structures are then converted into the native STL file format required for 3D printing using commercial 3D printers. The acoustic properties of the fabricated bulk absorbers were measured using a normal incidence tube setup. The effects of surface geometry, pore size, and through-thickness density gradients on the acoustic properties of the absorbers are studied and compared with equivalent-fluid model predictions.

Document Type: Research Article

Affiliations: Wichita State University

Publication date: 03 October 2019

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content