Skip to main content

Free Content Noise Control Capability of Structurally Integrated Resonator Arrays in a Foam-Treated Cylinder

Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraftrepresentative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems. Foam layers with a range of thicknesses were applied near the inside surface of the cylinder to represent different degrees of conventional blanket treatments. Excitations including point force as well as harmonic and random fluctuating pressure fields were considered. The results suggest that structurally integrated resonators can be tuned to address a variety of noise control requirements and effectively used in conjunction with foam blanket noise treatments, but their relative benefit is reduced when thicker foam treatments are used.

Document Type: Research Article

Affiliations: NASA Langley Research Center

Publication date: 10 November 2017

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content