
Meteorological effects on the noise shielding by low parallel wall structures
Numerical calculations, scale model experiments and real-life implementations have shown that the insertion of a closely spaced array of low parallel walls beside a road is potentially a valuable road traffic noise abatement technique. However, all previous studies have assumed a non-refracting
and non-turbulent atmosphere. This study carries out a numerical assessment of the extent to which the noise reduction is preserved in the presence of wind gradients and turbulence. Several full-wave calculation techniques have been used to model the noise reduction provided by parallel walls
subject to moderate and strong winds, and in a turbulent atmosphere. While meteorological effects do not deteriorate the insertion loss of the parallel wall array in the low frequency range, higher sound frequencies are strongly negatively affected. These numerical results are compared to
the noise shielding of traditional highway noise walls with different heights including refraction.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Publication date: 21 August 2016
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content