Skip to main content

Automotive tyre cavity noise modelling and reduction

Buy Article:

$15.00 + tax (Refund Policy)

Noise and vibration in automotive vehicles relates to a feeling of luxury. Noise, Vibration and Harshness engineers spend significant time tuning designs to achieve this. Low noise must be achieved against a requirement to reduce weight, installation time, manufacturing complexity, achieve a carbon reduction and an increase in fuel economy.One particularly annoying noise originates in the pressurised air cavity bounded by the metal wheel and tyre rubber surfaces and is referred to as "tyre cavity noise". It is a particularly problematic resonance due to the low frequency (approximately 200 - 250Hz) and the low loss factor of air, causing high amplitude sound. Traditionally, this is addressed through the careful choice of suspension natural frequencies to avoid coupling resonances and addition of mass damping layers to the cabin and transmission paths.In this paper, a numerical model of the tyre cavity is produced with passive resonators to reduce the noise. Complications that arise due to wheel loading, speed, temperature changes and manufacturing durability are discussed, with a optimisation routine used to obtain tuned Helmholtz resonators for inclusion in wheel spokes. A stationary experimental rig is introduced as a validation tool, with an array of microphones used to illustrate mode shapes.

The requested document is freely available to subscribers. Users without a subscription can purchase this article.

Sign in

Document Type: Research Article

Publication date: 21 August 2016

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content