
Numerical Modelling of Ground Vibration Caused by Elevated High-speed Railway Lines Considering Structure-Soil-Structure Interaction
Construction of high-speed railway lines has been an increasing trend in recent years. Countries like Denmark and Sweden plan to expand and upgrade their railways to accommodate high-speed traffic. To benefit from the full potential of the reduced commuting times, these lines must pass
through densely populated urban areas with the collateral effect of increased noise and vibrations levels. This paper aims to quantify the vibrations levels in the area surrounding an elevated railway line built as a multi-span bridge structure. The proposed model employs finite-element analysis
to model the bridge structure, including a multi-degree-of-freedom vehicle model and accounting for the track unevenness via a nonlinear contact model. The foundations are implemented as rigid footings resting on the ground surface, while the soil is modelled utilizing Green's function for
a horizontally layered half-space. The paper analyses the effects of structure-soil-structure interaction on the dynamic behaviour of the surrounding soil surface. The effects of different soil stratification and material properties as well as different train speeds are assessed. Finally,
the drawbacks of simplifying the numerical model, in order to reduce the complexity of the calculations, are determined.
The requested document is freely available to subscribers. Users without a subscription can purchase this article.
- Sign in below if you have already registered for online access
Sign in
Document Type: Research Article
Publication date: 21 August 2016
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content