Skip to main content

Free Content Numerical study of an in-situ technique for measuring surface impedance and reflection coefficient of a locally reacting material with pressure-velocity probes

The characterization of the acoustic sound pressure and velocity field on the surface of absorbing materials plays a key role for the computation of their surface impedance and absorption coefficients. In this work, a technique based on the equivalent source method (ESM) is used to estimate the pressure and velocity field in order to compute the surface impedance and reflection coefficient of a locally reacting surface. The assessed in-situ technique only requires measuring on a single layer with an array of pressure-velocity (p-u) probes. A numerical simulation study is performed to compare the estimated values with those obtained using a double layer of pressure sensors. Results show a significant improvement in the lower frequency range in terms of both reconstruction accuracy and robustness against noise.

Keywords: 35.2; 72.7

Document Type: Research Article

Affiliations: Microflown Technologies

Publication date: 13 June 2016

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content