Skip to main content

Free Content Hybrid Finite Element-Transfer Matrix method for vibroacoustic applications

Download Article:
This paper is concerned with the development of a hybrid methodology to speed up finite element analysis in vibroacoustic applications. The approach aims at avoiding the finite element modeling of the noise control treatment, which is cumbersome from both computational (i.e. model size) and virtual prototyping (i.e. meshing) standpoints. A transfer matrix model is instead employed, allowing for a reduction of the computational burden and a substantial simplification of the multilayer modeling. The methodology relies on the assumption that the noise control treatment is flat, homogeneous and of infinite lateral extent (i.e. finite size effects are neglected). The latter hypothesis implicitly assumes that the response of the treatment is controlled by the direct field contribution. However, although such assumption seems to be justified by short wavelength and large dissipation, it is shown that finite size effects within the noise control treatment may be important if a finite element comparable accuracy is required. Hence, a simple correction based on the image source method is proposed to retrieve the missing reflected field contribution.

Document Type: Research Article

Publication date: 13 April 2015

More about this publication?
  • The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.

  • Membership Information
  • INCE Subject Classification
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content