
A multi-sine sweep method for the characterization of weak non-linearities; plant noise and variability estimation
Weak non-linearities in vibrating structures can be characterized by a signal-model approach based on cascade of Hammerstein models. The experiment consists in exciting a device with a sine sweep at different levels, in order to assess the evolutions of non linearities on a wide frequency
range. The method developed in [1], based on exponential sine sweep, is able to give an approximative identification of the Hammerstein models, but cannot make the distinction between nonlinear distortion and stationary plant noise. Therefore, this paper proposes improvements on the method
that provide a more precise estimation of the Hammerstein models through the cancellation of the plant noise: it relies on the repetition of the signal on a certain amount of periods (multi-sine sweeps) and then on the consideration of the synchronous average out of the different periods from
the resulting signal. Mathematical foundations and practical implementation of the method are discussed. The second main point of improvement concerning the study of the vibrating device is the use of the Bootstrap analysis. By considering some periods randomly chosen among the multisine sweep,
one can study the variability of the experiments. The method becomes more robust. [1] M. Rébillat et al., JSV, 330:1018?1038, 2011
Document Type: Research Article
Publication date: 13 April 2015
The Noise-Con conference proceedings are sponsored by INCE/USA and the Inter-Noise proceedings by I-INCE. NOVEM (Noise and Vibration Emerging Methods) conference proceedings are included. All NoiseCon Proceedings one year or older are free to download. InterNoise proceedings from outside the USA older than 10 years are free to download. Others are free to INCE/USA members and member societies of I-INCE.
- Membership Information
- INCE Subject Classification
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content