@article {Williams:2018:0736-2935:5806, title = "The Impact of Design Details on Large Silencer Performance", journal = "INTER-NOISE and NOISE-CON Congress and Conference Proceedings", parent_itemid = "infobike://ince/incecp", publishercode ="ince", year = "2018", volume = "258", number = "2", publication date ="2018-12-18T00:00:00", pages = "5806-5815", itemtype = "ARTICLE", issn = "0736-2935", url = "https://ince.publisher.ingentaconnect.com/content/ince/incecp/2018/00000258/00000002/art00089", author = "Williams, Paul and Hill, James and Thomson, Jamie and Kirby, Ray", abstract = "Large silencers are commonly used in harsh environments where the design must consider high flow-rates, temperatures and stresses. This can impact on the construction of both the silencer baffle and the required support structure. Changes to the silencer design may include gaps between elements to allow for thermal expansion, support structures that can obstruct the air-path and extra protection for the porous insulation. Typical prediction models do not account for such factors and their effect on the overall performance of the silencer is not commonly known. In this paper numerical models using the finite element method are used to compare the effect of such details on the silencer insertion loss. The results of these predictions are compared to measured data and used to provide understanding as to the magnitude of the uncertainty typical design details may introduce.", }